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ABSTRACT 
Dist

Experimental response functions are often approximated by simple

empirical functions such as polynomials. Several methods for modeling such

responses which take into account this approximate nature are described and

are shown to be essentially equivalent. The models all involve a Bayesian

analysis which reflects prior experimental belief about the ability of the

empirical approximation to represent the true responLt function. The models

are also related to Kalman filters. Implications of the models for

statistical inference are examined with particular attention to estimating the

response function. Numerical examples help illustrate the models. A general

predictive check is developed to examine the consistency of the model with the

observed data.
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SIGNIFICANCE AND EXPLANATION

Scientists and engineers often wish to predict the value of a response

variable as a function of one or more input variables. When the form of the

response function is unknown or is very complicated, it is common to

approximate the true response function by an empirical graduating function

such as a polynomial whose coefficients are estimated from observed data.

Several statistical models have been proposed recently which reflect the

approximate nature of empirical graduating functions. The models all follow a

Bayesian approach which incorporates the experimenter's prior beliefs as to

the likely (in)adequacy of the graduating function to represent the true

response function. The resulting prediction equation has two components: an

estimated graduating function and a second function which may be interpreted

as the estimated bias induced by the particular choice of graduating

function. The inclusion of the bias component typically allows the prediction

equation to follow the observed data more closely than the graduating function

alone. The extent to which the prediction equation will deviate from the

graduating function depends largely on the experimenter's prior beliefs: if

these express perfect confidence in the ability of the graduating function to

model the response, then the bias will be estimated to be 0 and the prediction

equation will contain only a graduating function; on the other hand, if the

graduating function is thought to be seriously inadequate, the prediction

equation will approximately interpolate the observed data points.

An example is given in which yield of a chemical process is thought to be

roughly a linear function of the reaction temperature. The Bayesian methods

produce prediction equations which show an overall linear increase of yield

with temperature, but with local deviations about the trend line to more

closely follow the observed experimental data.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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BAYESIAN MODELS FOR RESPONSE SURFACES
OF UNCERTAIN FUNCTIONAL FORM

David M. Steinberg

1. Introduction

Many scientific investigations are designed to explore the relationship

between a response variable Y and a set of input, or explanatory variables,

*, 2, ...,. The inputs may be continuous variables, such as dosage or

time, or categorical variables, such as sex or batch number. Information on

how the response is related to the inputs is obtained by conducting an

experiment: n combinations of the inputs are specified and at each of these

combinations an experiment is conducted and the resulting value of the

response is observed.

Sometimes the physical nature of the problem suggests a specific

functional form linking the response to the explanatory variables. However,

in many investigations the functional nature of the response is either unknown.

or is too complicated to provide a useful representation. A common strategy

in such situations is to approximate the true, but unknown, response function

by a simple graduating function, typically a low degree polynomial. For

example, one might employ the first order approximation:

(1.1a) Y(9) W B0  + "iXi,

where the q variables X1 ,...,Xq are currently thought to be appropriate

functions of the input variables CI'-.'' and 00, 0,...,0 q are parameters

which must be estimated. This type of approximation is most common when the

input variables are continuous but is also applicable for categorical inputs.

If a first order approximation is judged to be an inadequate representation of

the response function, one might use instead the second order approximation:

(1.1b) Y( ) B + EExijXiXj.

Sponsored by the United States Army under Contract No. rAAG29-80-C-0041.



When these equations are used to approximate the relationship between the

response and the inputs, we can represent the experimental results by a linear

statistical model:

(1.2) T N ZB + 9,

where Y denotes the nxl vector of observed responses, X is an nxp matrix of

regressors whose columns correspond to appropriate powers of the q functions

of the input variables, Xi,...,XqI B is a vector of parameters which must be

estimated, and 9 denotes the experimental error associated with the

observations. The statistical techniques of response surface methodology can

now be used to estimate the parameters and to analyze the behavior of the

response (see Box and Wilson [1951], Box [1954], Box and Youle [1955], Myers

[1976] ).

Because (1.2) is only an approximate model based on an approximate form

for the response function, it is natural to wonder what the effect might be of

analyzing the experiment as though the approximating model were in fact the

true response function. Box and Draper [1959] found that criteria for

experimental design are affected dramatically when the approximate nature of

the model is taken into account.

Recently, several authors have proposed generalizations of (1.2) which

are designed to model scientific uncertainty about the form of the true

response function. Smith [1973] suggests a three tiered Bayesian model

following the general structure described by Lindley and Smith [1972]. Blight

and Ott [1975] expand (1.2) by adding an extra term to reflect the difference

between the approximation and the true model. O'Hagan [1978] proposes a

"localized regression" model, in which the structure of (1.2) is maintained,

but the parameter values are allowed to vary throughout the design space,

subject to prior assumptions about their joint distribution. Wahba [1978]

2
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advocates the use of approximating spline functions, and demonstrates how

these generalize (1.2) and also how they can be viewed as Bayesian solutions

to the estimation problem. Sacks and Ylvisaker 11978] suggest a model

similar in form to that of Blight and Ott, but employ a frequentist, rather

than a Bayesian, estimation procedure.

This paper will discuss the first four approaches, all of which involve

Bayesian analyses. The next section will define the four models and will

demonstrate how they are related to one another. Sections 3 and 4 will

describe how the models can be used to draw inferences about the relationship

between the response variable and the inputs. Section 5 will consider the

traditional statistical test for lack of fit (i.e., model inadequacy) in the

context of the Bayesian models. Section 6 will demonstrate some similarities

and differences between these models and the Kalman filter. Some examples

will be presented in Section 7 and concluding remarks are reserved for the

final section.

3



2. Models for Unknown Response Functions

Smith [1973] proposes a hierarchical Bayesian linear model to represent

the relationship between a response vector Y and a matrix X of associated

regressor variables. The hierarchical structure consists of three tiers and

provides the mechanism for building uncertainty about the response function

into the statistical model. The model is a special case of the general three

tiered Bayesian model analyzed by Lindley and Smith (1972] so that all of

their results may be applied here.

The first tier of Smith's model simply states that the observation vector

T follows a multivariate normal distribution with mean vector SI and
2 2

variance matrix a times the identity matrix, where a indicates the

magnitude of experimental error:

(2.1a) TI 1  2 Ucol,2I..

The second tier invokes the linear model structure by asserting that the

vector of expected values, 01, follows a multivariate normal distribution

with mean vector O2 where B2 is a vector of regression coefficients and

corresponds directly to B in equation (1.2):

(2.1b) 01/02 - N(Z•2 ,V).

Smith examines in detail only the case where 102 represents polynomial

regression with a single regressor, but the generalization to arbitrary linear

models is straightforward. The variance matrix V indicates the experimenter's

a priori confidence in the adequacy of the linear model. Note that if the

elements of V are all quite small, then the model is claiming that the

expected value vector, 01, follows the linear model 102 very closelyl i.e.,

the linear model is assumed to be a very good representation of the true

response function. In fact, the limiting case of Smith's model as V converges

to a 0 matrix yields precisely the same analysis that results from treating

4



(1.2) as an exact model for the experiment. On the other hand, if the

elements of V are rather large, this reflects prior belief that the true

response may deviate considerably from the linear model, even though it may be

our best current guess for the response function. Just what constitutes

"large" or "small" entries in V will be left vague for now; however, a

repara eterization which makes these terms more precise will be described in

section 3.

The final tier of the model assigns a prior distribution to the

regression parameters:

(2.1c) e2  ~ N( oVI)-

A diffuse prior is often deemed appropriate for the regression parameters and
-1

this can be achieved by considering limiting forms as V I  converges to 0.

Blight and Ott 11975] propose a model which represents the response as a

sum of three components:

(2.2) Response - Low degree polynomial approximation

+ deterministic error (bias)

+ random (experimental) error.

The first and last terms are identical to the two terms in (1.2); what

distinguishes this model from (1.2) is the second term, which is an explicit

statement of the approximate nature of the polynomial. Actually, this type of

statistical representation is well established: it is common practice to

analyze estimators post-hoc by taking the expected value of the squared

difference between the estimator and the quantity to be estimated and then to

decompose this expected mean square error into variance and bias components.

Blight and Ott merely suggest that bias, as well as variance, be incorporated

into the original statistical model.

5
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Mathematically, Blight and Ott's model can be written:

(2.3) 1 - ZO + " + 6,

The three terms on the right hand side of (2.3) correspond to the respective

components of (2.2). Blight and Ott, like Smith, reserve close scrutiny for

the special case where only one regressor variable is used in the polynomial

approximation, but there is no difficulty in generalizing to arbitrary linear

models. Observe that (2.3) is identical to (1.2) but for the addition of the

middle term, q, and the assumption that this term permits an exact

representation of T, so that an equals sign is now justified.

Blight and Ott complete their model specification by making the following

distributional assumptions:

(2.4a) 0 - N(50, Q )

(2.4b) 4 - N(O,L 1 )

(2.4c) C - N(O,a 21).

In addition, it is assumed that B, q and C are distributed independently.

A simple rationale underlies the distributional assumptions. Equation

(2.4a) provides the prior distribution for the regression parameters and is

directly analogous to (2.1c) in Smith's model. Again, a diffuse prior
Q-1

corresponds to considering limiting forms as 0 tends to a 0 matrix. The

assumptions on c are identical to those in the standard linear model, that

the experimental errors are independent and normally distributed with zero

2mean and common variance a

The distribution of the bias term given in (2.4c) is justified by

appealing to prior belief. Recall that the bias term represents that part of

the response function not captured by the approximating polynomial. Since the

approximating polynomial typically represents the best current guess as to how

the response depends on the inputs, it is reasonable to assign the bias a

6



prior mean of 0. The variance matrix of the bias suggests the possible

severity of the biasi i.e., the prior adequacy assumed for the model. The

diagonal elements of L"1 can be interpreted as reflecting the magnitude of

the bias at the respective design points. The off-diagonal-elements reflect

prior assumptions about how similar the bias is likely to be at corresponding

pairs of design points. This is closely related to prior convictions about

the smoothness of the response function, since a response function which is

smooth will have similar biases at proximate design points.

Both Smith and Blight and Ott propose to account for the approximate

nature of the linear model (1.2) by adding an extra component. Smith suggests

a hierarchical model, which assumes that the expected values of the

observations need not exactly follow the linear model. Blight and Ott add a

bias term which explicitly represents the difference between the true response

function and the linear model. In both cases, a covariance matrix expresses

the experimenter's prior belief about the degree to which the approximating

model may be inadequate. It is clear that the two approaches share a similar

spirit. We now show just how similar they are.

Theorem 2.1 The Smith model and the Blight-Ott model are mathematically

equivalent.

Proof: The proof is very simple and relies on a trivial re-writing of

Smith's model. We will simply write each of the first two stages in Smith's

model as the sum of a deterministic term (the expected value) plus a random

term with an appropriate covariance matrix. (In fact, this is one of the

methods employed by Lindley and Smith (19721 in deriving some of the

properties of their more general hierarchical model.) Thus, we rewrite

equation (2.1a) as:

(2.5a) • - 01 + , whe N , 2l).
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Similarly, we rewrite equation (2.1b) as:

(2.5b) 0I = XO2 + 1, where 1 - N(O,V).

Now, substituting (2.5b) into (2.5a) gives:

(2.5c) Y = X62 + 11 + C,

where the distributions of q and C are given above and the distribution of

2 is given in (2.1c), and the three terms are independent. This is

precisely the model suggested by Blight and Ott, with *2 in place of 0 and V

corresponding to L -:. This completes the proof.

The mathematical equivalence proved above is interesting in light of the

somewhat different interpretations suggested for the two models. The model

inadequacy approach advocated by Smith and the bias approach used by Blight

and Ott would seem to be just two sides of the same coin.

O'Hagan [1978] suggests a different way to modify (1.2) to reflect

uncertainty as to the form of the response function. He argues that, while

(1.2) may be adequate to describe the response function in the immediate

neigl-,rhood of any particular point x = (X1 (),...,Xq (C)), it is unlikely

to be valid over the entire range of inputs which might be used. This leads

him to generalize (1.2) by allowing the parameter vector 0 to be a function

of x. The manner in which 0 varies with x is not specified in terms of an

exact functional form; rather, a prior probability distribution is used to

describe the experimenter's beliefs as to how the parameters may change from

one point to another. O'Hagan calls this the "localized regression model".

O'Hagan formally defines the localized regression model by specifying the

appropriate distributional assumptions for each point x in the design space.

Denoting by Y. an observation at the point x, he assumes that:

(2.6a) Y 5~(x) - N(f(x)'S(x),O2),

where f(x) is a vector whose elements are the appropriate regressor variables

8
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evaluated at x and 02 is the experimental error variance. Further, he

assumes that:

(2.6b) O(W)/b 0 - N(b 0 , 0 ).

We can interpret % as the parameters of a global regression function about

which there is local variation; B0 is a corresponding covariance matrix whose

entries indicate how much the regression parameters at any particular point

may vary about those for the global regression function. When there is no

prior information to suggest a specific global regression function, O'Hagan

suggests using a vague prior distribution for %. This is accomplished by

assuming that:

(2.6c) b0 - N(b*,kb*),

and considering limiting forms as k + . Finally, he assumes that the

parameter values for any two points x, and 12 are stochastically related:

(2.6d) E{[0(z 1 ) - b0 ]( M 2 ) - b0 '/b 0 } V(x 1 ,).1

The matrix V in (2.6d) plays a similar role to the matrix L in the

Blight-Ott model. O'Hagan uses this matrix to reflect prior belief about how

much the parameters (less the global parameter values) may vary from one point

to another, while Blight and Ott wish to model how much the response function

itself (less the polynomial approximation) may vary. In general, the entries

of V are related to prior convictions about the smoothness of the response

function: assuming that the parameter values at two design points are highly

correlated is tantamount to assuming that a single approximating polynomial is

adequate to describe the response function throughout the range between

them. This idea can be used to suggest specific forms for V. For example, in

the case of polynomial regression with a single regressor variable, O'Hagan

suggests using: V(x1,x2 ) - p(1x I - x2 )B0, where p(d) is a monotone

decreasing function of d and p(0)-I. For this choice, 6(x) is a second-

9



order, stationary stochastic process on the real line and the rate at which

p(d) decreases reflects prior assumptions about the smoothness of the

response function. The slower the rate of decrease, the more highly

correlated will be the parameter values at similar points, and hence the

greater the degree of smoothness assumed for the response function.

From the above comments, it is clear that O'Hagan's model shares some

common ground with Blight and Ott's model. In fact, O'Hagan observes that the

Blight-Ott model "shows many similarities" to his own. However, concentrating

on the specific covariance function analyzed in detail by Blight and Ott, he

continues that "their model can be regarded as a special case of ours in that

a localized regression term (locally constant) is added to a global term

(polynomial). Their analysis relies on a special covariance structure for

[r and...their estimation of the global term takes no account of the average

effect of the localized disturbance over the region of interest." By

considering Blight and Ott's model in the more general form described in (2.3)

and (2.4), we now show that it is actually equivalent to O'Hagan's model. Of

course, by Theorem 2.1, this is also true of Smith's model.

Theorem 2.2: Under the model specification of (2.6a-d), the observed data

vector Y is described by the model (2.3)-(2.4), with bo in place of 0 and

L = f(zi)'V(Zi,xj)f(xj).Lij i ij j

Proof: The proof is very similar to that of Theorem 2.1. We begin by

rewriting (2.6a) as:

(2.7a) Y - f(x)'() + , where C - N(0,0 2).

Now rewrite (2.6b) as:

(2.7b) (x) b0 + V(x), where () N(O,B0).

10

104-



Substituting (2.7b) into (2.7a):

(2.7c) Y = f(x)'b + f(x)'C(x) + C
Z 0 x

f(x)'b 0 + r x + ,x, where nx = f(x)' C(x).

Thus the observation vector Y can be written:

(2.7d) T = b0 + 1 + e'

precisely the form of (2.3). All that remains to complete the proof is to

show that 11 has the distribution claimed in the theorem:

(2.7e) E{i} = 0, because E{C(x)} = 0 for all x.

(2.7f) SEf[xi)'(x)][f(x )'C(x)]'}

= f(x )' E(x.)C(x.)'.I f(x.)

= f(xi )'V(Zi,x )f(xj ).
iiJ

The last line follows from combining assumption (2.6d) of the model with the

definition of C(x) in (2.7b).

The spline function approach, on the surface, appears quite unrelated to

the models described above. However, results of Wahba [19781 show that it is

essentially an equivalent procedure when the regression coefficients are

assigned a diffuse prior.

Generalized smoothing splines for the statistical problem posed here are

derived as solutions to a problem in functional approximation. The solution

in the general case exploits the structure of reproducing kernel Hilbert

spaces (r.k.h.s.) (see Aronszajn [1950) for the general theory of r.k.h.s.).

First, denote by ~*1  1 the monomials which constitute the approximating

polynomial. Now let HK be a r.k.h.s. of functions defined on the design space

which contains the 4 j}= and has reproducing kernel K(x1 ,x2 ). It can be

shown that HK has a representation as the direct sum of span {#j} and a

r.k.h.s. HQ, which has reproducing kernel Q(x 1,K2 ). Let PQ be the orthogonal

projection operator from HK onto HQ. Then the generalized smoothing spline

11



gn, is defined as the solution to the problem: find g e HK to minimize

(2.8) n 1 2 [g(x.) -Yi ] 2  + l 2p g|
( nPIQ K

where the summation is over the n observed data points and the latter term is

the squared norm (in HK) of the projection of g onto HQ times a smoothing

parameter X.

Much of the work on smoothing splines has focused on the case where the

design space is one dimensional, *. = x , j=1 ,...,p, and

P Q(g) = dpg/dxp . In this case, it is well known that gn, is a polynomial

spline of degree 2p-1 and is uniquely determined provided the data cannot be

exactly interpolated by the approximating polynomial (see Wahba [1978]). A

common choice for p has been p=2, in which case |PQ(g)1 2 _ (g(2(x))2dx and

has a direct interpretation as a measure of the smoothness of the solution.

The choice of X then controls the tradeoff between how smooth the solution

will be and how clos ly it will match the observed data.

The solution gn,X to (2.8) will always include the postulated

approximating polynomial, since PQ (# ) = 0, j=1,...,p. Thus, the polynomial

can be included in the solution at no cost to the second term in (2.8), with

the coefficients chosen to minimize the sum of squares. This prompts Wahba to

suggest that "spline smoothing is an appropriate solution to the problem

arising when one wants to fit a given set of regression functions to the data

but one also wants to 'hedge' against model errors".

Wahba (1978] proves the following theorem which relates spline smoothing

to Bayesian estimation of a stochastic process.

Theorem 2.3: Suppose the true response function is g(x), so that the i'th

data point is

Y, = g(xi) + i

where 9 = (C. ) N(,02 I). Let the prior distribution of g(x) ben

12

i m mm m mmm . .nonw



the same as that of the stochastic process

(2.9) T(x) = 1 8.*j(x) + b 1 /2z(Z),

where 0 = (Ol,...,0p P N(O0,CV, b;0 is fixed and Z(x) is a zero mean

Gaussian stochastic process with E{Z(XI)Z(x2 )} = Q(x,,x2 ). Then for any

fixed point x,

where A=2 /nb and E denotes expectation with respect to the posterior

distribution of g(x) given the prior (2.9). Thus the smoothing spline

solution gn'A is the limiting posterior expectation of the response function

given (2.9) when the prior distribution of the parameters in the approximating

polynomial is made diffuse.

The characterization of spline smoothing in Theorem 2.3 as a form of

Bayesian estimation suggests a similarity with the previous models. We prove

this in the following theorem.

Theorem 2.4: Under the prior specification (2.9) of the last theorem, the

prior distribution of the data vector Y is given by the Blight-Ott model

-1
((2.3) and (2.4)) with Q = gI and with L = bQ(xi'xj).

Proof: The i'th observation is Yi - g(Xi) + C. Then, given (2.9), the
1

prior distribution for the i'th observation is the same as the distribution of

j l.j.(xi) + b /2Z(xi) + C.

- !.j.(x i ) + Ti + C..
j=I  i i

The full data vector Y thus has a prior distribution identical to the

distribution of

XO + it + S

where X is an nxp matrix with Xi j  j(x p and

= (ni,...,nn )'. The prior distributions of i, N and t are easily seen to

be those claimed in the theorem.

13



The essence of Theorems 2.3 and 2.4 is that spline estimation can be

derived as a Baye. estimate of the response function, and the prior

specification which corresponds to spline estimation is essentially that

proposed by Blight and Ott (or, equivalently, by Smith or O'Hagan). However,

two qualifications are necessary. First, the Bayesian model defined by (2.9)

prescribes the prior distribution of the response function for all possible

factor settings. This is also true of O'Hagan's localized regression model.

The Smith model of (2.1) and the Blight-Ott model of (2.3) and (2.4) are

limited to the n observed data points. However, the natural extension of

their models to draw inferences about the response at arbitrary factor

combinations corresponds precisely to the priors of (2.6) and (2.9). Thus

these "complete" priors, although not stated directly by Smith or by Blight

and Ott, are nonetheless implicit in their models. This will be examined in

detail in section 3.

The second difference between the model formulations concerns the matrix

L1 . In the Smith and Blight-Ott models, the entries of this matrix reflect

the experimenter's prior belief as to the magnitude of bias at the design

points and, in theory, they are restricted only by the requirement that
-1

L be a legitimate covariance matrix. This is not so for O'Hagan's model or

for spline estimation. The form of this matrix for O'Hagan's model was

derived in Theorem 2.2 and was found to depend on the form of the

approximating polynomial. The covariance matrix for spline estimation, given

in Theorem 2.4, derives from the r.k.h.s. structure in conjunction with the

choice of the approximating polynomial. The problem must be phrased in terms

of an overall r.k.h.s. HK which in turn must be decomposable into the direct

sum of span 1# and a r.k.h.s. H.. The covariance matrix is then determined

by the kernel Q(zl,x 2 ) of H. This restriction may result in some loss of

14



generality. In actual practice, the Bayesian interpretation of L as a

covariance matrix has played a secondary role in spline fitting. The primary

concern has been to define an appropriate smoothness penalty. The smoothness

-1
penalty determines the appropriate r.k.h.s. and L is then obtained as the

Graumian matrix of appropriate elements of the r.k.h.s. (see Kimeldorf and

Wahba [1971] for details). This is a valuable reminder that the basic

motivation for using smoothing splines derives from ideas in functional

approximation, not from its characterization as a Bayesian technique, although

the latter has been emphasized here.

15



3. Inference for Future Observations: Prediction and Estimation

This section will discuss how statistical inferences may be drawn from

the Bayesian models of section 2. The analysis will focus on the problem of

predicting the response for various combinations of the input variables.

This, after all, is the ultimate objective of the response surface framework

described in section 1. However, we will also consider questions of inference

regarding the regression coefficients themselves, in particular as they relate

to predicting the response.

The notation used will be that of the Smith model (equation 2.1),

although both the Smith model and the Blight and Ott models will prove useful

in deriving some of the results. Of course, they will be equally valid for

both models, as well as for O'Hagan's model and for the spline formulation

when a diffuse prior is used for the regression coefficients. Most of the

results will be stated as theorems. However, the proofs of the theorems will

be deferred to the appendix at the conclusion of this report.

Consider first the problem of predicting the response Y when the input

variables are fixed at 1=Cl..,=Ck . First, let us convert the inputs to

the more meaningful scale of X1,...Xq. We will then derive results for

predicting Y(c) indirectly, in terms of Y(x), where x=(X1(c),...,Xq W).

For the Bayesian models of section 2, a natural method of prediction is

to extend the model to include the prediction site, as well as the design

points, and then to find the conditional expectation of Y at the prediction

site given the observed data. Let Y denote the n observed experimental

responses and let Y denote a (as yet unobserved) response at the prediction

site. Similarly, denote by SI and 0 the respective first tier expected1x

values of Y and Yx" Assume that the observational error associated with Y.'

like those in the experiment, is independent and normally distributed with

16



2

mean 0 and variance a . Denote the regressor variables for Y by an nxi

matrix X and denote those for Y. by a 1xp vector z'. Denote the covariance

matrix of the second tier by

v :[ J ]
where the partitioning corresponds to that of 8 and x. The entire model is

now specified by:

(3.1a) (Y',Y )/(',ex) - N((8, 9 ),a I2 )
x x 1 x n+1

(3.1b) (o',ex)/o 2  - N(((XO 2)',(W )),V

(3.1c) 02 - N(0 ,V ).

It should be noted that this is precisely the model that would be implied by

the "more complete" prior specification of (2.9), when the prior for the

regression coefficients, 02P is made diffuse. This explains the comment of

the previous section that the more complete prior is implicitly assumed in the

Smith and Blight-Ott models.

Theorem 3.1: Under the model specification of (3.1), the conditional

expectation of YX, given that the observed data are Y=y, is:

(3.2) EtYt/T-yj = z'P0 + v' + z'V1 X')(G 2 n + V + IVI1') -(y - 15 0 ).

The conditional expectation of the regression parameters is:

(3.3) Ef02 /T=71 = 0 + V 1 '(2 In + V + XV X')-I(Y - X 00

The results of Theorem 3.1, although straightforward, are not

particularly revealing; equations (3.2) and (3.3) do not provide much

intuition. The following corollaries and theorems will help to clarify this

situation. We begin by observing how (3.2) and (3.3) are related.

Corollary 3.1.1: Mi) The prediction for Y. has a natural decomposition as the

sum of an approximating polynomial whose coefficients are estimated by

E{0 2/T-y} and a second term, which Blight and Ott call the correction for

bias, depending on v:
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(3.4) ,{y,/V-y} - X'Zf6,/-1 + -'(d 2 x1. + V + Y I') -1(, - zo)

- sE{ 2 /"} + .1,/.,.}

where ni denotes the bias contribution at x, following the notation of (2.3).

(ii) The bias term in (3.4) can be simply expressed in terms of the residuals

at the design points when the approximating polynomial alone is fit. Let us

denote that vector of predictions by a , that is, T- {02 } In a

similar fashion, denote the corresponding residual vector by e" y - ,
E{1/Tr=my} " v-l2p

Then nn 
+ V '( 2 +n

The corollary provides valuable insight into the role that the matrix V*

plays in predicting Y." Tb- elements of this matrix reflect the prior

covariance assumed for the bias (or model inadequacy) at appropriate pairs of

points in the design space. Let us denote the covariance function over all

such pairs by v(xl,z 2 ). Then v'-(v(z,z),....,v(z,xn)). Substituting this

into the second term of (3.4) yields:
n

(3.5) E{Y/Ti-/ } - .E{,2 /-y} + I a v(z,zi),

where the coefficients ai are estimated from the data. The prediction

equation, as a function of x, combines the approximating polynomial with a

linear combination of n functions which are completely determined by the form

of the covariance function and the choice of design points.

This might provide useful guidelines for choosing the covariance

function, since some choices may lead to especially appealling prediction

equations while others may have undesirable consequences. For example, Blight

and Ott considered the special case of univariate polynomial regression and

suggested using v(x,z) - p2 Xlx-zl, O<W)(, which is the covariance function

for a first order autoregressive process. It can be seen from (3.5) that this

results in a prediction equation whose derivative is discontinuous at each

design point. If it is believed that the response function has a continuous
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derivative, then this covariance function may be a poor representation of

prior belief. Similarly, Smith's prior specification for univariate

regression, whereby V = T 2I, is called into question. V will be proportional

to the identity, in general, only if v(x,z) decreases rapidly as x and z

become distant from one another. But then the n functions v(x,xi ) in (3.5)

will each have a rather sharp "spike" around xi. The resulting prediction

function will deviate from the approximating polynomial only in the vicinity

of the design points, but these deviations may be quite sharp. This also

would seem to be an unlikely summary of prior belief about the nature of the

response function.

There are several interesting limiting cases of the above formulas. We

have already observed that it is not uncommon to assign a diffuse prior to the

regression coefficients. This special case is treated by Lindley and Smith

[1972] and by Blight and Ott. It is also the situation in which the spline

theory can be related to these models. As noted by Lindley and Smith, the
-1

prior is made diffuse by allowing I to tend to 0. The following theorem

applies the results of Theorem 3.1 to this special case.

Theorem 3.2: Suppose a diffuse prior is assumed for the regression

coefficients. Then the predicted response at x is:

(3.6) . El E{YX/T=Y'} = z' [X'N-]-1 -y
-1-1 -1-1 -

+ v,(N - - -I X[X'- I x] 1XIIly

where K - (2 I + V). The estimated regression coefficients are:n

(3.7) 1191 E{62 /Y=y} = [X'K-1 --

V 1+0
Note that for fixed 02 the sampling distribution for Y under (3.1) is

T - N(X62a0 'n + V). The maximum likelihood estimate of 2 under this model
2' n 2

is precisely the estimate given in (3.7). Thus the well-known correspondence

between maximum likelihood estimation of regression parameters and Bayesian
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estimation with a diffuse prior is valid for these models.

As with Theorem 3.1, the above equations suggest a natural decomposition

of the prediction equation into an approximating polynomial plus a "correction

for bias" function:

Corollary 3.2.1: An alternative expression for the prediction equation when

the regression parameters are assumed to have a diffuse prior is:

(3.8) li E{Y /I=y} = z'li E{ 2 /T'7} + v' -I - X[X'R- X] -1 IM-1.
V +0 V +0

Theorem 3.2 also suggests a Aifferent way to write (3.6) and (3.7), which

directly contrasts the importance of bias and experimental error.

Corollary 3.2.2: Suppose that V is a scaled version of a "standardized"

covariance matrix R ; that is, V = TR . Denote by R, r and r the

partitioned pieces of R which correspond to V, v and v, respectively, in

* 2
V. Let a= o/T. Then:

(3.9) i EIY/yl} = -(X'C- IX) -ly

V+ + r{C- I- C-1 X(xc-1 x)-1XC-1}(,

where C = Al + R, andn

(3.10) li T  E{ 2/Y-y} = (ZC-1 X)-1 zVC- 1 y.
V +0

Corollary 3.2.2 is important in that it shows the contrasting roles of

experimental error and bias in determining the prediction equation (3.9) and

2
the estimated regression coefficients (3.10): they depend on a and T only

through their ratio A. This ratio thus provides a concise summary of how

"large" or "small" are the elements of V. Allowing A to range from 0 to

infinity permits us to model situations from those in which the bias is

totally dominant (as might be the case in numerical analysis) through those in

which the experimental error is dominant (when, say, scientific knowledge

provides an exact form for the response function). This parameter corresponds

directly to the smoothing parameter in the spline formulation (2.8) and we
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shall see in Theorems 3.3 and 3.5 how it acts as a smoothing parameter here.

(An essential assumption in obtaining this result is that the regression

coefficients have a diffuse priori if a proper prior is used, the ratio of

2
a to T does not determine the conditional expectations.)

An important conclusion of the corollary is that the degree to which a

polynomial approximation P(z) is an adequate representation of a respnse

function g(x) depends on the extent of experimental error, not just the

absolute bias, g(x) - P(z). Thus, for example, even if the response function

differs considerably from the form of the approximating polynomial,

substantial experimental error will most likely make it impossible to detect

this and our estimate of the response function should not deviate greatly from

the approximating polynomial. On the other hand, if experimental error is

very small, even minor departures from the approximating polynomial may be

graphically obvious from a simple plot of the data and our estimator should be

modified accordingly. This fundamental observation that the magnitude of bias

must necessarily be evaluated relative to experimeatal error is also a basic

feature of the design criteria developed by Box and Draper [1959].
*

The corollary suggests that V be written as proportional to a

"standardized" covariance matrix. Although there is no precise way of

specifying what is meant by *standardized", we can offer some guidelines. One

natural possibility, if the diagonal elements of V* are all assumed to be

equal (as, for example, in Smith and in Blight and Ott), is to let R* be the

correlation matrix which corresponds to V both of the preceding papers used

precisely such a parameterization. When the bias variance is thought to

depend on x, which might be appropriate for many response surface situations,

*
then R might be defined so that the variance for some specified x would be

equal to 1. Then A would represent the ratio of experimental error to bias
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at that particular x.

Theorem 3.3: Suppose we can write V = TR , as in Corollary 3.2.2. Then we

have the following limiting forms as X+-%

(3.11) lim urn =

1 +0~ rY '(')Xy

(3.12) lr li E{8 2/T=y} = (X'X)-I.y.
X+.W V 1-+0

If R is non-singular, then we have the following limits as X+O:

(3.13) lim liT E{Y /T=y } = z'(X'R 1Ix) -Ix'R7-y

1 +0 + r'{R - R-1 XXR I-X) K- X )ly, and

(3.14) lim 14m E{6 2/T'.y} = (Kx'R -1 x-1y.
X+0 Vl+0

The first half of Theorem 3.3 yields familiar answers: the ordinary

least squares estimators. Thus, ordinary least squares obtains as a limiting

case of the Bayesian model when the regression parameters have a diffuse prior

and when the bias is assumed to be negligible relative to experimental error

(i.e. when the approximating polynomial is assumed to exactly represent the

response function). The second half of Theorem 3.3 does not have so immediate

an interpretation. However, the following corollary makes clear what happens

when A tends to 0.

Corollary 3.3.1: Denote by Y the nxl vector of predicted values

corresponding to the n design points; that is, = EY x/T=y}. If R is a

non-singular matrix, then:

lim li W Y = yj
A+O V 1+0

i.e. the prediction equation interpolates the observed data. If there are

replicate observations at some of the design points, these will contribute
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identical rows to R, making it singular. Although the corollary cannot then

be applied directly, it is easy to use the corollary to show that the limiting

prediction curve as A+0 interpolates the averages of the responses observed

at each design point.

If we think of the prediction equation E{Y}/TuY} as a function of X,

we see that it varies from an interpolant (when X-0) to the least squares

approximating polynomial (as A tends to infinity). The former result seems

intuitively reasonable, for X-0 describes the situation in which there is no

experimental error, so that the observed responses are exact values of the

response function. The prediction equation reflects this certain knowledge by

correctly predicting the response at those points.

This particular characterization of the prediction equation as a function

of A is well-known in the spline literature (see, for example, Kimeldorf and

Wahba [19711). Blight and Ott were evidently unaware that it held for their

model as well. They proposed a parametric form for the R matrix, and then

suggested that these parameters and A be jointly estimated by minimizing the

residual sum of squares, S(R,A) - ) (yi - i)  It is clear from the

corollary that this will always be minimized when A = 0, regardless of the

values of the other parameters.

We can also state some additional properties of the predicted value

vector i. A common characterization of Bayes estimates is that they can be

expressed as weighted averages of their prior means and the observed data.

This is not possible for predicting the response at an arbitrary point z since

in general no observation has been made there; however, for the n observed

data points and for the estimated regression coefficients, we can write such

weighted averages.
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Theorem 3.4: The predicted value vector Y can be expressed as a weighted

average of its prior mean, KS 0 and the observed responses, y, where the

weights are inversely proportional to the respective measures of variation,

V + XV 1 V and a :
A - + (V[I'' 1-2y (+V' 1  

A

(3.15) Y _ [0-2In (V + XVI11)-I]'I + (V + XVZJI)-IX0].

Similarly, the estimated regression coefficients can be written as a weighted

average of their prior mean 0 and the observed responses, with the weights

inversely proportional to the prior and data precision matrices, respectively:
(316 E{/YY1 _ [X,( a21 + V) -1 V-1 -1 2X ( a 2 -1 v-+ 1)-z+ V l E-l(z + )-l 5].

(3.16) E 2 n2/ + 1 x' ) n ,10

The following theorem demonstrates more clearly the link between the

Bayesian models and the statistical smoothing approach.

Theorem 3.5: Y solves the minimization problem: find u to minimize

(3.17) (u-y)'(u-y) + (u-XO)'[O2 (V + XV1X') - 1u-0O).

If V1 1= 0, (3.17) becomes:

(3.18) (u-y)'(u-y) + Au'[R -
- RlX(xR'IX)'IX'R-I]u,

where I and R are defined as in Corollary 3.2.2. Moreover, the second term

in (3.18) is 0 if and only if u e col(X), that is, if and only if u can be

written as a linear combination of the columns of X.

Both (3.17) and (3.18) characterize the prediction vector Y as the

solution to a minimization problem composed of two terms: the residual sum of

squares, (Y-y)'(Y-y), and a quadratic penalty term. For the general case,

(3.17), the quadratic penalty is in terms of the distance of Y from its prior

expectation, X 0 . This will clearly have the effect of "shrinking" the

vector of predicted values toward the prior expectation. The extent of this

shrinkage depends on the weighting matrix a 2(V + vI X') -. This matrix is

2proportional to a , but inversely proportional to the prior variance. Thus

the prior expectation will be most important when our prior precision is great
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relative to experimental error; when our prior precision is not great, the

data will dominate the prior in determining Y.

The quadratic penalty term undergoes several interesting changes in the

limiting case of (3.18). First, the penalty can be expressed solely in terms

of the "standardized" bias covariance matrix R and the variance-bias tradeoff

parameter X. Second, the penalty is independent of the prior expectation.

Third, the penalty is 0 only for those vectors of predicted values which are

in the column space of X; i.e. for those vectors of predicted values which can

be exactly written as an approximating polynomial. The meaning of these last

two points is that the penalty does not induce shrinkage toward a particular

pre-specified vector; rather, in a more general sense, there is shrinkage

toward the response plane spanned by the approximating polynomial. Finally,

note that equation (3.18) is an exact discrete analogue of (2.8), the

continuous smoothing problem which leads to generalized spline estimation.

Were we to discretize the more general penalty function of (2.8) and limit it

to the design points, we would obtain an equation like (3.18); unfortunately,

it is impossible to follow this path in the reverse direction and derive a

continuous penalty which corresponds to a discrete one. Nonetheless, (3.18)

illustrates the close link between spline estimation and the Bayesian models

with a diffuse prior on the regression coefficients.

When V1  0, Theorem 3.5 allows us to show how the residual sum of

squares depends on the choice of A. Let us denote the vector of predicted

values by Y(M) to emphasize its dependence on X. Then define the residual

sum of squares function by RSS(A) = [;(X) - y]'[;() - y].

Corollary 3.5.1: RSS(M) is a monotone increasing function of X, with

RSS(A = -) equal to the residual sum of squares from fitting the approximating

polynomial by ordinary least squares and, provided R is non-singular, with
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RSS(O) -0.

Additional comments on the type of estimates produced by these Bayesian

models will be found in section 7, where several examples are presented.
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4. Inference for Future Observations: Precision

Statisticians are rarely satisfied with point estimates alone; some

measure of the precision of the estimates is also essential. Since the

Bayesian models base their estimates on posterior distributions of the

quantities of interest, rather than on sampling properties, it is natural to

obtain measures of precision from the posterior distributions, as well. Since

the scope of this paper is limited to multivariate normal distributions, the

natural measures of precision are the appropriate posterior variance

matrices. These will be presented in this section.

Theorem 4.1: Let Y. denote a potential future observation at z. Suppose the

joint distribution of Y and the observed response vector Y is given by

(3.1). Then the posterior variance of Yz is:
(4.1) Varfy,/Tl = 2 + V + Z' [Z.(2I + V)- X+ V 1 ] -

2=-1

2v' ( 2I+V+XVI X1 -lxvz

-v'(o2I + V + XVI V) v.n1

The posterior variance matrix for the regression coefficients is:

(4.2) Var{O2/.y} = [Z(a 21 + V) + V 1 -1
2 n 1

The posterior variance of Y is composed of several components. One of

2
these is, of course, a , since any future observation is itself subject to

observational error. Another component (the last term on the first line of

(4.1)) is clearly seen to be Var{'6o2/ .y }, the posterior variance of the

approximating polynomial part of Y1. The remaining components involve

quadratic forms of the bias covariances and the regressor variables, but do

not suggest any obvious interpretation. Both of the posterior variances given

above depend on the choice of the experimental design (i.e. on X), but not on

the observed responses y, a well-known property of conditional variances for

multivariate normal distributions.
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As in the last section, it is of particular interest to study the special

case when the regression coefficients are assigned a diffuse prior.

Corollary 4.1.1: Given the assumptions of Theorem 4.1:

(4.3) li Var{Y/Ty} - a2 + v + z'(X',i-'x)-'
V P
1 

+0 - 2v'iEX(X'_1>)'

- v'(u m" - 1(x-1,3'Ix)- 'xINv,

where H 2I + V. Similarly:n

(4.4) lij Var{62/ 1Y} - ('11x) - .
V +0

Once again the use of a diffuse prior leads to the same variance matrix

for the regression coefficients that would be obtained by traditional sampling

theory methods for this model.

The formulas of Corollary 4. 1 .1 can be rewritten in a standardized form

in precisely the same manner as the estimates of the preceding section.

Following the same notation, let R denote the standardized bias covariance

matrix, with V - TR, and let A - o2 /T be the variance-bias tradeoff

parameter. Unlike the posterior expectation of Y,' which depended on 0 and

T only through A, the posterior variance proves to be proportional to

a2 , with the constant of proportionality a function of only A.

Corollary 4.1.2: Under the assumptions of Theorem 4.1:

(4.5) liyP VarlY./T-7 - a211 + A-1 r + A-lz'(X'C X) 'z
V1 +10-1 - -1 1

1-2X_ rIC 1 (X'C_ I ) -1

x- 1 r'C 1 - CIX(x'C- IX)-X'C- 1 ]r,

where C -A + R, and:
n

(4.6) lif Var{8 2 V71 - a2 - x'c-1  x 1 .

V +0
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5. Testing For Lack Of Fit

The Bayesian models studied in this paper have been designed to describe

situations in which an unknown response function is approximated by a simple

graduating function such as a polynomial. The models seek to account for

this approximate nature, whereas traditional analysis typically proceeds as

though the graduating function were an exact representation of the response

function. However, traditional analysis is not blind to the fact that a

particular graduating function may be inadequate to represent a complex

response function, and numerous diagnostic procedures have been developed to

help us judge model inadequacy. One such procedure is the lack of fit test.

This section will show how the lack of fit test relates to the Bayesian models

of section 2.

The classical lack of fit test depends on the availibility of an

2
"independent" estimate of the error variance a . (By independent, we mean an

estimate which is independent of the assumed approximating function.) Such an

estimate might result from knowledge of the experimental situation, past

experience or, as is often the case, from the inclusion of replicate

observations in the experiment. The extent to which the observed responses

vary about the estimated graduating function can then be compared to this

standard; if the variation is excessive, this is an indication that the

approximating function is inadequate.

Specifically, suppose the approximating model (1.2) is exact, so that

O2i
Y = XO + 9, and suppose further that C - N(O,0 2). Let Y denote the vector

of predicted responses obtained from ordinary least squares regression. Then

it is well known that the scaled residual sum of squares is distributed as a

chi-squared random variable:

(5.1) RSS/0
2  2

Xn-pD
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where RSS - T - T- Y) is the residual sum of squares, n is the number

of observations and p is the rank of X. The lack of fit test thus compares

2
the observed RSS, scaled by the prior estimate of 0 , with percentage points

2
of the corresponding chi-squared distribution. When the estimate of a is

itself obtained from the experiment via replicate observations, the analogous

procedure is to divide the RSS into two components:

(5.2) RSS = SS(Pure Error) + SS(Lack of Fit),

where SS(Pure Error) is the replication sum of squares and SS(Lack of Fit) is

the sum of suared deviations of the replicate averages about the estimated

graduating function. These terms are divided by their appropriate degrees of

freedom, and their ratio then has an F distribution under the assumption that

the approximating model is correct.

The Bayesian models described in section 2 account for the approximate

nature of the graduating function by adding an extra term. In section 3, we

saw that when these models assign a diffuse prior to the regression

coefficients, the extent to which the added term influences the estimates is

controlled by the single parameter X, the ratio of experimental error to

bias. In particular, the limiting case of A = m reduces to the traditional

model in which the graduating function is assumed to exactly represent the

response. Thus it seems reasonable that we should be able to generalize the

lack of fit test to the Bayesian models as a test regarding X in such a way

that the test described above results in the limit as A tends to m.

A general method for deriving diagnostic checks of parameters in Bayesian

models has been suggested by Box [1980]. He advocates examining the

consistency of the observed data vector Y with the predictive distribution

implied for Y by the model. Of course, the predictive distribution of Y is

simply the marginal distribution given in Lemma 3.1 of the appendix:
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(5.3a) T - N(XZoa2I + V + XV I').

Using the reparameterization suggested by the standardized form of Corollary

3.2.2, let us replace V by I a 2R to obtain:

(5.3b) 2 N( OI + X-1a2R + V 1').

A logical diagnostic checking function based on the predictive distribution is

the sum of squared deviations from the mean vector weighted by the inverse of

the covariance matrix:

(5.4) h(X- (T - Xo)'(a 2 + -I 2 R + ZV IX) -( - X0).

If the model is true, then h(A) should be distributed as a chi-squared

random variable with n degrees of freedom. Assuming the other parameters in

the model are exactly specified (including a 2), this can be used to check

whether an hypothesized value for X is consistent with the data.

We have already remarked that considerable interest focuses on the

special case when the regression parameters are assigned a diffuse prior. We

now examine how this affects the diagnostic checking procedure described

above. To do so, we must first establish some simple results about the

residual vector which results when a diffuse prior is used. Proofs for all of

the following propositions are given in the appendix.

Lena 5.1: Suppose Y follows the model described by (2.1), with V - 12R.

Let Y(A) denote the vector of predicted values when the regression

coefficients are assigned a diffuse prior, and let ;(A) denote the

corresponding residual vectorl i.e. ;(X) - Y -T(A). Then:

(5.5) eA) - B(A)T,

where B(A) - )[C " - C-IZ(Z'C'IX) 'Z'C " ] and C - )X + R.
n

Theorem 5.1: Let us denote by h (A) the special case of h(A) which

obtains when the regression parameters have a diffuse priori i.e.

h*(A) - liT h(A). Then:

131
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(5.6) h (M) = [(X)T)'(1 + X' R)ID()]/a-.
n

In the limit, as A w , ye have:

(5.7) 1 h*(X) RSS/0
2

where RSS denotes the residual sum of squares which results from ordinary

least squares regression.

The limiting case given in (5.7) above is precisely the traditional lack

of fit statistic suggested in (5.1) for situations in which a2 is assumed to

be known. Thus, the predictive check described above does provide a

generalization of the traditional lack of fit test when the regression

coefficients are assigned a diffuse prior. For general X the diagnostic

statistic given in (5.6) is a weighted, scaled, residual sum of squares, where
the weighting matrix is I + A-IR - A1'C and the scale factor is a2.

n

An interesting question arises concerning the appropriate reference

distribution with which to compare the diagnostic statistic (5.6). We

obtained (5.6) as a limiting case of (5.4), which we argued earlier should

have a chi-squared distribution with n degrees of freedom. However, when we

examined the limiting case of (5.6) which corresponds to perfect faith in the

approximating model, we obtained (5.7), the traditional lack of fit statistic,

which has a sampling distribution which is chi-squared with n-p degrees of

freedom, where p is the rank of X. What happened to the p degrees of freedom,

and which, if either, of these distributions is an appropriate reference

distribution for (5.6)?

It seems clear that of the two limiting processes which lead from (5.4)

to (5.7), the more important is the use of the improper prior for the

regression coefficients. This affects p dimensions of the prior distribution,

precisely the number of degrees of freedom lost. We might then think of the
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improper prior as forcing us to replace those p dimensions with information

from the data, at the expense of information about the residuals. The results

of Theorem 3.5 are also germane here. Theorem 3.5 characterized T as a

shrinkage type estimate. When the regression coefficients were assigned a

proper prior, the shrinkage was in the direction of the prior mean,

XO0; however, when an improper prior was used, the shrinkage was in the

direction of the p-dimensional regression plane, rather than toward a specific

vector in that plane. Again, this suggests that using a data estimated

Y rather than a prior mean vector reduces the dimension of the space in which

the residuals lie, resulting in a loss of p degrees of freedom. Thus,

although it is not formally true that h (A) has a probability distribution

(an inevitable consequence of using a vague prior for the regression

coefficients), we feel that 2 is an appropriate reference distribution for

the diagnostic statistic (5.6) which can be used to check any hypothesized

value of X.

Lemma 5.2: Consider the weighted residual sum of squares which appears in

(5.6), but with the vector of predicted values, and hence the residual vector,

determined by a proper prior. For any A:

11T EI(T - Y)'(I + A R)(Y - - (n-p)a

The above expression is not the expected value of h (A) since we have

reversed the limit and the expectation. (As noted above, formally, h (A)

does not have a probability distribution, and hence has no expectation.)

Nonetheless, the lemma does provide additional support for the claim that the
2

proper reference distribution for (5.6) is 2

Box [1980] found that many of the predictive checks for standard models

were identical to hypothesis tests derived from corresponding sampling theory
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models. This is also true of the current diagnostic statistic. An

appropriate sampling theory model for (2.1) can be derived by viewing the

distribution of Y given a fixed value for the regression vector 2, rather

than averaged over a prior distribution for 0 2. The resulting model is a

standard linear model, but with correlated errors:

(5.8) - N(1 2O a 1 + A o2R).

Theorem 5.2: Given the sampling model (5.8) and assuming that a2  is known,
the appropriate lack of fit statistic for the model E{Y} - X 2 is (5.6).

22

The sampling theory distribution of (5.6) is 2

Thus Theorem 5.2 provides still further support that "P is an appropriate

reference distribution for (5.6).

The theory presented thus far might be used to test whether a particular

value of A is consistent with the observed data. It is common practice to

apply reverse logic to such procedures and to consider the collection of

A's which are consistent with the data, within given quantile bounds of the

reference distribution. Traditionally, this is advocated to construct

confidence sets from hypothesis tests. Whether or not we choose to regard the

resulting collection of A's as a confidence set, the exercise is instructive

as to the nature of the proposed predictive check. Theorem 5.2 can be used to

characterize such a set, via the following corollary.

Corollary 5.2.1: h (A) is a monotone increasing function of A.

The corollary makes it clear that for any given quantiles from 2., the

set of A's for which h (M) lies within the quantiles will be an interval

(possibly infinite). This is intuitively reasonable. Moreover, we see that

some choices of A may be rejected because the diagnostic statistic is too

large, while other choices may be deemed inconsistent with the data because

2the statistic is too small to reasonably have a _p distribution. This
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differs from the traditional lack of fit test, which rejects only in those

instances where the statistic is too large. This is a consequence of the

explicit representation of bias in the Bayesian models: the traditional test

can tell us only that the approximating model is inadequate, while the

predictive test tells us whether our representation of the inadequacy is

insufficient, excessive or reasonable.

The predictive check (5.6) can also be extended to problems for which

2
a is unknown but can be independently estimated. Typically this occurs when

replicate observations have been made at some of the design points -- since

replicate observations have the same expected value, any differences among

them can be attributed solely to experimental error. This leads to the

decomposition of the residual sum of squares into "pure error" and "lack of

fit" components given in (5.2). If m(i) observations, Yi,1,...,Y im(i), have

been made at zi, i=1,2,...,k, then the pure error sum of squares is given by:

k m(i)
(5.9) SS(Pure Error) - X (Y - yi)21 1 J

where Y i is the average of the m(i) observations at xi. The lack of fit sum

of squares can now be obtained by subtraction. Alternatively, we can

calculate the lack of fit sum of squares by replacing each component of the

response vector I by the average of all the replicate observations at that

point and then comparing this vector to the predicted value vector.

Specifically, let T be the vector generated from Y by replacing Yi,j by Vi.

Then the lack of fit sum of squares can be written:

(5.10) SS(Lack of Fit) ( - )(Y - Y).

It is easy to show that (5.9) and (5.10) satisfy (5.2).

The diagnostic function h (M) can also be decomposed into "pure error"
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and "lack of fit" components when replicate observations are available. We

define SS(Pure Error) exactly as in (5.9), while SS(Lack of Fit) is found by

an approach analogous to that which led to (5.10). As above, let Y be a

vector generated from Y by replacing each observed response by the average of

all the responses observed at the same design point. The lack of fit sum of

squares is then calculated from (5.6), but with Y replacing Y:

(5.11) SS(Lack of Fit) = [3(X)Y]' (3 + 1R) [B( )Y].
n

It is easy to show that the sum of (5.9) and (5.11) is the weighted residual

sum of squares in the numerator of (5.6).

From a sampling theory point of view, we can now test the adequacy of the

model by comparing the ratio:

[SS(Lack of Fit)/(k-p)]/[SS(Pure Error)/(n-k)]

to quantiles of an F distribution with k-p and n-k degrees of freedom. We can

also justify this procedure from a Bayesian standpoint by considering the

2
distribution of this ratio conditional on a and then assigning a uniform

improper prior distribution to log(a). If we assume that the distribution of

*2 2
h (A), conditional on a , is actually X_p then integrating out

2
a results in the F distribution above.

Although we have emphasized the use of h (X) to check the consistency of

A with the data, it is important to keep in mind that it is the entire model

specification that is being checked, not just the particular value of X.

Thus, the previous discussion really must be read as conditional on the

assumption that we are quite certain of the best choice of an approximating

polynomial and of the form of R; only the relative importance of bias to

experimental error is really at question. If this is the case, then an

abnormally large or small value of the diagnostic statistic can legitimately

be interpreted as reflecting an inappropriate choice of A, and we may seek to
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improve the model by changing X.

Often, there will be several aspects of the model about which we are

unsure. Since the diagnostic statistic (5.6) is an omnibus check of the

model, it will not point to any one of these features as inadequate. Rather,

we must use our judgment in determining which aspects of the model should be

changed in order to make it consistent with the data. Sometimes, a more

flexible approximating polynomial may suffice to render the bias correction

insignificant; this, of course, is the corrective action almost invariably

used when the traditional lack of fit test is applied. Graphical techniques

will often suggest when this is desirable. In other cases, revising our

assumptions about the smoothness of the response function as reflected in R

might be of great help. However, the predictive check can be most easily

expressed in terms of its relation to X and, in general, we feel it should

be interpreted as an indication of the adequacy of X.
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6. A Kalman Filter Version

The Kalman filter is a system of stochastic equations used primarily by

control engineers to describe processes that evolve over time in a structured,

but non-deterministic fashion. The primary objective of the engineers is to

study the properties of different strategies which might be used to keep the

process under control. However, the Kalman filter itself is quite general and

may be used to model a wide variety of statistical problems. A recent paper

by Harrison and Stevens [1976] has suggested how the Kalman filter can be

applied to the problem posed here of studying how a response variable depends

on several inputs when an exact form for the response function is unknown.

This section will show how the models of section 2 can be written as a Kalman

filter; however, we will argue that the chief advantage of this model,

Kalman's recursive estimation procedure, cannot be applied.

We will follow the general set-up of Harrison and Stevens. They proposed

a "dynamic linear model":

(6.la) Yt = "t0t + Ut t -N(OU )

(6.lb) 0t = G0t_1 + wt , wt -N(O,Wt).

The first equation, known to control engineers as the observation equation,

relates a vector of observed variables, Yt, to a known matrix Ft of regressor

variables via a linear model plus random noise. The second, or system,

equation relates how the parameters themselves may change from one observation

to the next (herein lies the "dynamic" element of the model). It is assumed

that the current parameter values are a known linear transformation G of the

previous values perturbed by the random error wt . Initial parameter

estimates, 0, are needed to start the process. Typically, rather than

specify exact values, a prior distribution is provided for 0, so that the

model has a distinctly Bayesian character.
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Harrison and Stevens proposed this model with time series data in mind,

so they naturally interpreted the index t as denoting the sequential order of

the observations. However, the model is not restricted to time dependent

data. In general, one can think of t as simply an arbitrary parameter which

labels the different observations (perhaps the order in which experimental

runs were made, or the "standard" ordering for the experimental design

used). The matrix Ft then corresponds only to th,- values of the regressor

variables for the t'th observation, not the entire X matrix of the previous

sections.

The rationale for ordering the observations is so that we may use

Kalman's recursive estimation algorithm. The algorithm provides a simple but

powerful way to calculate the posterior distribution of 0t given YI' . t

and Fl. ..... Ft. Specifically, if the prior distribution of 00 is N(m0,C0),

then:

(6.2) t/Yl,.... tF1,... ,F t  - N(t,C t),

where mt and Ct are obtained recursively from the following set of

equations. Let:

(6.3a) y = FtORt_1,

(6.3b) e Yt e y  f

G39

(6.3c) R -= C G(tI + t,

(6.3d) S -F 1W + ,
(6.3e) A - 11 8 - 1 .

Then:

(6.4a) M"t = GM t-1 + Ae,

(6.4b) C t = R - AUSA'.

Note that if the t'th observation, y t is p-dimnsional, then equations (6.3)

and (6.4) provide a technique for calculating the posterior distribution of
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the parameter vector 6t which never requires inversion of matrices larger

than pxp, regardless of the sample size. In particular, if yt is a scalar,

then no matrix inversion is required at all. This special case was remarked

by Plackett [1950] as a simple device for updating regression estimates when a

new data point is obtained.

Many common statistical models can be written in the form of (6.1). For

example, standard linear regression can be described by taking G to be the

identity matrix and requiring that wt be identically 0 for each t; that is,

each succesive observation depends in exactly the same way on the regressors.

Harrison and Stevens present numerous additional examples in their paper. In

particular, they remark that "hierarchical models, such as those of Lindley

and Smith (1972], can also be '1ormulated as dynamic linear models". The

Kalman filter approach is clearly evident in O'Hagan's [1978] localized

regression model, which postulates a regression model in which the parameters

change regularly from one point in the design space to another (see in

particular the comments by Priestley and Titterington).

We will now show how Smith's model (2.1), itself a special case of the

models proposed by Lindley and Smith, can be written as a dynamic linear

model. (However, we will use the equivalent formulation of Blight and Ott

((2.3) and (2.4)) rather than (2.1) in order to avoid confusion with respect

to the indices on 8 -- in (2.1) the indices I and 2 are used to denote

parameters at the first and second tiers of the model, respectively, while in

(6.1) the same indices are used to denote the regression parameters for the

first and second observations, respectively.)

Recall from (2.3) that the vector of observed responses follows the

model: T = X0 + 11 + C. Let t be an arbitrary label, as suggested above.

Then the model equation for the t'th observation is:
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U I

(6.5a) Y, - z, n, + Ct - zt + Nt,

where Nt - t + Ct. Since we wish to describe (2.3) on an observation by

observation basis, Yt is a scalar, rather than the more general vector

observation allowed in (6.1). From the distributional assumptions for the

Blight and Ott model (2.4), we conclude that Nt has a normal distribution with

2
mean 0 and variance a + 1, where 1 is the appropriate diagonal entry from

L- . Thus, (6.5a) gives the observation equation for the model.

The system equation which corresponds to (2.3) is derived in the same

manner mentioned above for a conventional linear regression model. It is

assumed in (2.3) that the regression parameters remain the same for each

observation. This implies the system equation:

(6.5b) Pt - 0t_l,

where GtI and VtO for each t. The prior distribution for B given in (2.4)

can then be introduced by assuming that it is the prior distribution for

Since the system equation implies that B0I .... n, the same prior

distribution will be in effect for each observation. Thus for each

observation, the Blight-Ott model, and hence the Smith model, can be written

as a dynamic linear model.

The great advantage of the Kalman filter model is the existence of the

recursive estimation algorithm (6.2)-(6.4) which provides a simple method to

calculate all the relevant posterior distributions without having to invert

large matrices. Unfortunately, the Kalman recursion relations are not valid

for (6.5). The reason is an important assumption, unstated by Harrison and

Stevens in either (6.1) or (6.2), that the random shocks occurring at

different time points must be uncorrelatedl i.e., that if t*t', then (ut,vt)

must be uncorrelated with (ut.,wts). However, we found in section 3 that the

assumption that ut and uts are uncorrelated for distinct t,t' leads to a
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discontinuous estimator. Thus the assumption that they are in fact correlated

is a central feature of the model. The algorithm can be extended to cover

this case (see Harrison and Stevens' reply to Godolphin's comment), but the

extension requires the inversion of a jxj matrix at the j'th step in order to

obtain the conditional distribution of vj given vl,...,vj_. Moreover, this

provides only the relevant posterior distributions for the observed sequence

of data points; in order to draw predictive inferences about possible future

observations, it is still necessary to invert an nxn matrix.

The Kalman filter representation provides an interesting alternative

statement of the models, emphasizing the similarity of the Bayesian linear

model and control theory models. However, unless the response function is

naturally observed as a time series, it is questionable whether the Kalman

filter representation provides much additional insight; it seems, in fact, to

be a rather awkward way to think of general response surface models.

Nonetheless, the representation would certainly be very useful if the

computational efficiency of Kalman's recursive algorithm were applicable it

is unfortunate that this is not so.
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7. Examples

In this section we will illustrate the results of the previous sections

by using the Bayesian models to analyze two numerical examples. Both examples

involve the response to a single input, and in both cases the response is

essentially a linear function of the input over the range the observations.

Thus, the straight line approximating model (1.1a) will be used, with the

input as the only explanatory variable. We will assign a diffuse prior

distribution to the regression parameters, so that the "standardized" notation

of Corollary 3.2.2 is appropriate. All of the calculations described in this

section were performed on the WIRCS/VAX computer. The Bayesian estimates were

calculated using the MATLAB matrix laboratory package (Moler, [1981]) while

the standard regression analyses were carried out using the MINITAB

statistical package (Ryan, et. al. [1981]).

The first example uses data reported by Draper and Smith (1981] from an

experiment to investigate the relationship between the yield of a chemical

process and the reaction temperature (in coded units):

Temp -5 -4 -3 -2 -1 0 1 2 3 4 5

Yield 1 5 4 7 10 8 9 13 14 13 18

A casual inspection of the data is sufficient to conclude that yield generally

increases as a function of temperature. The increase across the range of

temperatures in the experiment seems to be more or less linear, although there

is a fair amount of variation from one observation to the next, suggesting

either that experimental error may be fairly substantial, or that some

additional explanatory variable(s) which was not included in the experiment is

important in determining yield.

We propose to model these data by (2.3):
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T - |o + in +

where • is the vector of observed yields, X is the design matrix which

corresponds to a linear approximating model in temperature, i is the vector

of bias terms and C is the vector of experimental errors. We will assume

that the autocorrelation function of the bias process is:

(7.1) R(xl,x2 ) - exp[-(x I - x2)2/8],

where s is a parameter which we will specify. This is a legitimate

autocorrelation function (by Bochner's Theorem -- see Chung [1974], Chapter 6)

and corresponds to a continuous, second order, stationary Gaussian stochastic

process. Note that R(x,x) - 1 for all real xi thus, we are assuming in (7.1)

that the probable extent of the bias is the same at all temperatures. The

choice of s controls how rapidly the correlation drops off between different

temperatures. If s is quite small, the decay is very rapido this corresponds

to a prior belief that the relationship of yield to temperature may have sharp

local deviations from the overall linear approximation. On the other hand, if

a is large, so that there is a high correlation between the bias terms for

rather different temperatures, then (7.1) will reflect prior belief that the

response does not have any wild local oscillations. Thus the choice of a is

closely linked to the experimenter's prior beliefs about how smoothly yield

responds to temperature.

The autocorrelation function in (7.1) is very similar to that proposed by

Blight and Ott: R(x,z) - AIxZ, O0<W. The only difference is the use of

the squared difference rather than the absolute difference between the

respective points. However, a possibly important consequence of this change

is that it results in a prediction equation which is an analytic function of

temperature rather than a function with a discontinuous first derivative, as

results from the Blight-Ott suggestion.
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Two different values were chosen for each of the parameters associated

with the bias covariance function. The parameter s in the correlation

function was set at 1 and 16, so that the correlation decays to 1/e for

temperatures which are 1 or 4 coded units apart, respectively. The

experimental error to bias parameter X was set at 1 and 0.1, reflecting

situations in which bias is of the same magnitude or ten times as severe as

experimental error, respectively. Using each combination of these parameter

settings gave four different prediction equations. A fifth prediction

equation was derived by using ordinary least squares. The parameter settings

were chosen merely to illustrate the flexibility of the Bayesian models and to

illustrate their application; they do not reflect any experimenter's prior

assumptions about the relationship between temperature and yield.

The four prediction functions described above are graphed, along with the

OLS prediction function, in the four panels of Figure 1; each graph also

displays the observed data points. Overall, the five functions are very

similar and are clearly dominated by a positive linear trend. Over the range

of values graphed, these functions never differ by more than a unit of

yield. In particular, an analyst using OLS regression would reach roughly the

same conclusions about the relationship between yield and temperature as a

colleague using any of the suggested Bayesian models.

The differences among the prediction functions concern primarily the

manner in which they vary about the linear trend. The most noticeable

differences occur when s is altered from I to 16, reflecting prior belief in a

smoother relationship. The prediction functions bear convincing witness to

the effect of such a prior belief: the two graphs with s-i display

considerable local variation, with fairly sharp increases in yield followed by

plateaus and even by decreases. Although these prediction functions follow an
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overall linear increase, their slopes vary considerably with temperature. By

contrast, the two graphs with s-16 are strictly monotone increasing and their

slopes remain close to the overall trend at all temperatures.

The experimental error to bias tradeoff parameter I is seen to have less

effect than the correlation parameter s in this example. The two curves for

s-16, in particular, are almost identical throughout the region of the

observations. Only for those temperatures where our predictions are

extrapolations from the experimental region are there any noticeable

differences. When s=1, changing I has a more dramatic effect. The

prediction equation for s-1, X-0.1 follows the observed data very closelyl at

each of the experimental temperatures its predictions are closer to the

observed yields than any of the other equations. In fact, this equation seems

to follow the data "too well"; it would probably be very difficult to convince

the experimenter that the effect of increasing temperature on yield is so

irregular. It is more likely that we will be convinced that our parameter

settings are unrealistic, exagerating the effect of bias in shifting the

observed yields off a straight line when experimental error may have been much

more influential. We know from Theorem 3.3 that in the limit, as A4O, the

prediction equation will exactly interpolate the data (since we are using a

non-singular R here), and it is clear that for s-1, decreasing X to 0.1 is

sufficient to come very close to an interpolant. With s-16, even this ten to

one bias to error ratio is still a long way from interpolating the data. Thus

we also see, at least in this example, an "interaction" between the two

parameters.

The estimated regression parameters and their standard deviations

(divided by 0) are given in Table 1. The parameter estimates take on an

added importance in light of the particular bias covariance function we are
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using. Note that R(xl,x 2) + 0 as IxI - x2 1 + O. It follows from (3.5)

that for this example the prediction equations will converge asymptotically to

the straight lines determined by the parameter estimates. Thus, even if the

data had given rise to prediction equations that differ considerably from an

overall linear trend in the experimental region, the form of the bias

covariance function guarantees that extrapolation to points far enough outside

that region will be linear in temperature.

The estimated regression parameters are similar for all the models with

the exception of s-16, A-0.1. This bias covariance specification estimates a

slope which is more than 10% larger than that for any of the other models and

more than 17% larger than the (LS estimate. One possible explanation for this

involves the effect of the most distant observations on extrapolation when the

bias covariance is assumed to be rather stable. Intuitively, if the yield

corresponding to the highest temperature is "unusually" high, and we think

that the bias at proximate temperatures is quite similar, then this highest

observation may play a disproportionate role in determining our

extrapolations; mathematically, this is evident from examining the terms in

(3.5). Such an effect will be strengthened the more we decrease X,

Table 1: The estimated regression parameters and their standard deviations

(divided by o) for the four settings of X and s and for OLS regression.

Constant (S.D./a) Slope (S.D./0)

A-1, *=l 9.282 (0.49) 1.468 (0.15)

A-0.1, s-i 9.7"1 (1.27) 1.508 (0.38)

X-1, a-16 9.288 (0.75) 1.516 (0.19)

A-0.1, s-16 9.341 (2.12) 1.682 (0.46)

OLS 9.273 (0.30) 1.436 (0.10)
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emphasizing bias to a greater degree. But we noted above that extrapolations

are also related to the estimated regression coefficients. In this example,

the two most extreme temperatures have observed yields which suggest a steeper

slope than do the remainder of the observations. This may account for the

fact that all the Bayesian estimates of the slope are greater than the OLS

estimate. This effect becomes dramatic when s=16, reflecting prior belief in

a "stable" bias contribution, and X=0.1, indicating a belief that bias

greatly dominates experimental error in determining observed deviations from a

straight line graduating function.

The estimated standard deviations of the regression coefficients, unlike

the coefficients themselves, differ considerably from one model to the next.

Here it is A which has the principal effect. Decreasing A from 1 to 0.1

increases the standard deviation of both coefficients (modulo a) by over 2.5

times. Increasing s also increases the standard deviations, but to a more

modest extent. The effect of A is really a logical consequence of the prior

assumptions of the model: if a straight line is our best guess as to the

overall dependence of yield on temperature, but we believe there may be rather

severe bias, then it only seems reasonable that the experiment will be unable

to provide us with precise estimates of the coefficients of the straight

line. However, an additional point should also be kept in mind: if we

believe that bias dominates experimental error, then for any given data set we

will presumably obtain a lower estimate of a which will offset some of the

differences evident in the table.

The Bayesian models lead to quite different conclusions than OLS about

our ability to predict yield as a function of temperature. Figure 2 displays

graphs of VarlYx/TYl7/02 for (7.1) with s-1 and 16 and A1, and for OLS.

These functions are clearly symmetric about 0, so the graphs extend only over
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non-negative temperatures. It is clear from the graphs that OLS is more

optimistic about our ability to predict yield than are the Bayesian models.

This is perfectly reasonable, since the Bayesian models provide for a greater

degree of prior uncertainty about the experiment. The two Bayesian models

shown in Figure 2 also differ considerably. The prediction variances with

s=16 are much lower than with s=1. Again this is a logical consequence of the

differing prior beliefs being modeled. If s=16, the bias is relatively

stable, and the experiment permits us to effectively ascertain its effect at

least throughout the experimental region; however, if s-1, we are asserting a

prior belief that the bias may exhibit considerable local fluctuation so that

only observations in the immediate vicinity of a given temperature will really

be of much use in predicting yield there. This is the exact antithesis of

OLS, where certainty about the linear form of the response function implies

that experimenting at the most extreme temperatures possible will lead to the

most precise predictions at all temperatures. It also explains the local

minima that we observe in the graph for s-1 near most of the actual

experimental temperatures, while the other graphs are strictly monotone

increasing.

Within the range of the experimental data, the Bayesian model with s=16

produces prediction variances about 7% higher than OLS while the model with

s-1 produces variances about 40% higher. However, recall that these are the

variances of predicting a new observation and thus they all include a

contribution of I for the experimental error associated with that

observsation. If we subtract that term to obtain variances for the associated

expected value, the increases in the variances over OLS are about 40% and

250%, respectively. Outside the range of the data th6 differences are still

greater. The prediction variances for the Bayesian models increase rapidly

53



44

fa 0

N 04

I 4,

.I) 04 H

C.13

to

-- 4

.6-4 44

~4 110

cot
.010

p- 4 -A

04 1)-

0J

54



for extrapolating while the OLS variances continue to increase quadratically.

The second example involves an analysis of simulated data. Suppose the

true, but unknown response function is:

(7.2) g(x) = 20[exp(-0.3x) - exp(-0.4x)].

This response function is graphed in Figure 3. Response functions of this

form often arise in chemical reactions when an initial product A decays to an

intermediate product B which then decays to a final product C. Suppose an

experiment is conducted to investigate the behaviour of the response in the

neighborhood of x-5, where it is known that the response is approximately

linear in x. The experiment calls for taking observations at 11 equally

spaced sites from x=2.5 to x=7.5. We will assume that a2 is known in advance

to be 0.01.

We propose to model the observed data by Y = XB + 4 + 9, where X is the

design matrix for straight line regression, q is the bias term and e the

vector of experimental errors. We will model the bias covariance matrix by:

(7.3a) R(x 1,x 2 ) [(x I - 5)(x 2 - 5)/4]exp(-(x I - x2 ) 2/2)

if (xI - 5)(x 2 - 5) > 0

(7.3b) R(xlx 2) - 0 otherwise.

The idea behind this covariance function is to represent prior belief that a

straight line approximation is appropriate in the vicinity of x-5, but may be

increasingly suspect as x becomes more distant from 5. This sort of

assumption is appropriate for many response surface experiments. Thus the

bias variance at x is equal to (x-5)2/4. The division by 4 is a

standardization device, so that the choice of A will reflect the experimental

error to bias ratio at x-3 and x-7, covering 80% of the experimental region.

We will suppose that at these points bias is of about the same magnitude as

experimental error so that A1. The second term in (7.3a) reflects a prior
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belief that the covariance between the bias contributions at various x's tends

to 0 as the x's become increasingly distant from one another. The denominator

under the square in the exponential term controls the rate at which this

happens and has been chosen to reflect a reasonble belief about the smoothness

of the response function. A possible drawback to (7.3) is that for any given

x1 , R(x,x i ) is a continuous function of x, but its derivatives are

discontinuous at x=5. Thus the derivatives of the prediction equation will

also be discontinuous at x=5. Also, note that R(5,x)=0 for all x, and that

x=5 is one of the observation sites. Thus the R matrix for this model will be

singular, so that some of the results of Theorems 3.3 and 3.4 will not apply

to this example.

To justify that (7.3) is a legitimate covariance function, consider two

independent stochastic processes, each beginning at x=5 but moving from there

in opposite directions on the x axis. Suppose that each process, on those x's

for which it is defined, has the covariance function given by (7.1) with

s=2. Define two new stochastic processes by multiplying each of the original

processes by (x-5)/2. Since both of the new processes are constrained to be

deterministically 0 at x=5, we may tie them together into a single stochastic

process defined on the entire real line. This new stochastic process is

ea3ily seen to have (7.3) as its covariance function.

The "experimental data" for this example were obtained by calculating the

actual function values at the design points from (7.2) and then adding to them

computer generated random errors. The random errors were generated using the

normal distribution random number routine in MINITAB (Ryan, et. al. E1981]).

The function values and the observations are listed in Table 2. The

observations are also included on the graph of g(x) in Figure 3.

The Bayesian prediction equation and the OLS prediction line are both
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graphed in Figure 4. They are very similar to one another, although between

7.5 and 8.5 there is a mild discrepancy. This evidently results from the

effect of the low observation at 7.5 on the Bayesian line, in much the same

manner as we discussed for the last example. The estimated regression

coefficients and their standard errors are listed in Table 3. The standard

2
errors were calculated using the assumed known value a = 0.01. The

estimates are almost identical, but as in the previous example, the standard

errors are markedly greater with the Bayesian model.

2
Since a is assumed to be known here, we may use the predictive model

check described in section 5. The weighted residual sum of squares is 0.1482,

2
and dividing by a we obtain the checking statistic 14.82. The upper 10%

Table 2: The true response function values g(x) and the simulated data points

Y for the second example.

X( )

2.5 2.0897 2.2079

3.0 2.1075 2.2087

3.5 2.0668 1.8612

4.0 1.9860 1.9903

4.5 1.8788 1.7798

5.0 1.7559 1.9895

5.5 1.6249 1.4901

6.0 1.4916 1.6316

6.5 1.3600 1.3449

7.0 1.2329 1.3037

7.5 1.1122 1.0837
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2
point of the x distribution is 14.68, so that there is about a 20% chance,

if the model is valid, of obtaining so extreme a value for the checking

statistic. This may raise some doubts about the proposed model, but is

certainly not convincing proof of model inadequacy. Moreover, closer

inspection reveals that the simulated random errors are "a bit large" for the

N(0,0.01) distribution that was used -- the sample standard deviation of the

errors is 0.13 rather than 0.10 -- and this has helped to inflate the checking

statistic. Since other residual checks do not point to any gross model

inadequacies, it seems reasonable to accept the validity of the Bayesian

analysis.

Table 3: The estimated regression parameters and their standard deviations

for the Bayesian model and for OLS regression.

Constant (S.D.) Slope (S.D.)

Bayesian model 2.815 (0.188) -0.213 (0.037)

OLS regression 2.790 (0.100) -0.214 (0.019)
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8. Conclusions

Box [1982] observes that "all models are wrong some models are useful.

This aphorism must be particularly true of empirical models such as

polynomials that make no claim to do more than locally approximate the true

function." This paper has presented and analyzed several suggestions to

modify standard response surface models to take into account the inherently

approximate nature of commonly used graduating functions: the hierarchical

model of Smith [1973], the "polynomial approximation + bias" model of Blight

and Ott (1975], the "localized regression model" of O'Hagan [1978] and the

smoothing spline approach of Wahba [1978].

The major result of the paper has been to demonstrate that these four

models are essentially equivalent. This has helped make possible a complete

analysis of the consequences of these models for estimating response surfaces,

synthesizing and expanding upon the results which had been proved for each

individual model. The estimates depend on the magnitude of bias relative to

experimental error, with ordinary least squares regression obtaining in the

"special case" when it is assumed that there is no bias at all. A predictive

check of the model has been developed and is especially useful for criticizing

assumptions about the ratio of bias to experimental error. Additionally, the

relationship between these models and the Kalman filter has been explored.

Although the models can be written as a Kalman filter, this does not seem to

be a useful approach for most response surface models.

Much effort has been devoted in recent years to developing robust

statistical procedures, that is, statistical procedures which will give

reliable answers even when assumptions about the experimental mechanism (i.e.,

the proposed statistical model) are inexact. It is useful to view the models

discussed in this paper in the context of the robustness literature. All four
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models attempt to provide more reliable answers, but not by altering our

methods to make them less sensitive to faulty models; rather, by recognizing

the approximate nature of empirical graduating functions, they strive to

provide a more realistic model whose assumptions more accurately reflect what

we actually believe about the experimental data observed. This is consistent

with the viewpoint advocated by Box [1980], who characterizes robustification

as the "judicious and grudging elaboration of the model to ensure against

particular hazards". The models provide a useful and flexible method for

studying the adequacy of empirical response functions.
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Appendix

We now prove the various distributional results stated in sections 3, 4

and 5. Most of the proofs rely on the following lemma, which gives the joint

distribution of the observed responses, the regression parameters and a future

(as yet unobserved) response at x.

Lemma 3.1: Let Y denote the response vector, YX a future response at x and

02 the regression parameters. Then, under the model described by (3.1), the

joint probability distribution of (Y',Y' 2 ') is multivariate normal with

mean vector:

(A.1) E(',Y,,e 2 ')I - ((1 0),,(z'S7,,5')

and variance-covariance matrix:

a2In + V + XVIX' V + XVlz XV

(A.2) cov{(',Y,02')} = v' + -V 1' a2 + v + z'V 1 z'V

VI[' Vlz V 1

Proof: By Theorem 2.1, we may write the hierarchical model (3.1) in terms of

the Blight-Ott formulation (2.3)-(2.4):

Y XO2 + 4 + 6,

Y Z 02 + nX + Li,

where (',n )' N(9,V ), (,£) N(0, a21n+1), and 62 -N( 0,V ), andx x n12 0

where these three random vectors are independent. Equations (A.1) and (A.2)

now result from simple and straightforward computation.

Theorem 3.1:

(3.2) EfY/XIy - X' 0 + (V' + Z'V1 tXI(21 n + V + IV lX) (y - X00).

(3.3) E {0 2 /T1y} 0 + VX (2n + + XVIX'-1ly - X%).

Proof: These equations follow directly from Lemma 3.1 by applying standard

formulas for conditional expectations of partitioned multivariate normal

vectors (see, for example, Anderson (19581, p. 28). The only condition which
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must be checked in order to apply these formulas is that the covariance matrix

in (A.2) is non-singular. Equivalently, we can show that for any non-zero

vector a' - (aa2,i), the random variable (Y',OYx, 0)a does not have a

deterministic distribution. But

(Y'Y,IOI)a = a1Y + a2Y + a2

= (aX + a2z' + a)O +&I+ a n + a a + a .
2 3 2 1 2x 1 2 x

Now a and C are independent of each other and all the other terms, so any

vector a with non-zero entries in either a, or a2 must give rise to a random

variable with positive variance. If these entries are all zero, but a is non-

zero, then a must have at least one non-zero entry in a3; again, from the

above equation, it is clear that the resulting random variable must have

positive variance.
Lem 3.2: 2-1 1 --1 1 -1 -1 -1,

Lemma 3.2: (OIn + V+XVI') - - -1X(X -1X + )Ix'

where 2 - 2I + V.
n

Proof: The desired inverse matrices exist because of the assumption that V

and V, are covariance matrices and hence are positive definite. The lemma

then follows as a special case of the more general "matrix lemma" proved in

Lindley and Smith [1972].

-1 -1 -- 1 -
Lemma 3.3: V 11'(m + IV1X') = (XI'MX- + )-i'-

Pro:f: By Lemma 3.2,

VlX' (N + XVIX' >-1 - Vlx, [x-1 i- 1Ix(x-x1 + V171 )-Ix,-I]

M VI Xi- 1 -V1X,dx(XM'lx + v-1 >-ix -1
-v x.' - ,,[- 1Z + -1 4 + v) )I,'. M

M VlX-1 - VlXtn-1 + (Xt-1x + V-1 ) 1x -- 1

-1 -1 -1 -1.
S(Zl-IX + VI I'x 1
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Theorem 3.2:

(3.6) 1ii E{Y/T-y} = z'(x'i-NX)-x'K-y
V 1 0 +.[ 1-n ('-1 X -1 -11Y n+ v'L[.- - .'Z(z'R -) '.M,'" Jy and

(3.7) lij E{2/tYy} = (X-1x)-1 x'3ly,

where xt = a 21 + V.
n

Proof: These equations follow directly from (3.2) and (3.3) upon application

of Lemma 3.3 and some simple algebra. The derivations are virtually

identical, so we will prove only (3.7). From Theorem 3.1,

E{e2/Ty} = + VX'(02:n +Vl+X')-1 (Y - X00)

so by Lemma 3.3,

E{e2 /V71 y= ' 0 
+ (x-lx + v1')-'x,"( -1o-1

-1
and as V7 converges to 0, this clearly converges to

00 + (x~m-lx)-'x~i-'(y_ -x0>)
S(X~-x)-1 X,-1 1.

*

Theorem 3.3: Denote V - TR . Then we have the following limiting forms as

(3.11) lim lim ..1 EtY./ - z'(x'x)-lXy.
A+9o V 1-+0

(3.12) lim li E{02/T-y} -(X'x) 1ly.

X+- V 1+0

If R is non-singular, then we have the following limits as A + 0
(3.13) lim UT1 E{Y/TY - 1(X, -X>' x,1-17

).0 V 1 +01+ r' {-1 - R-lx(x-n-lx)-lx -1 }y

(3.14) lim lim.1 E{0 2/ Yr} - (x-7'3x>-lx)'-y.X+0 v1-+0
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Proof: From Corollary 3.2.2,

i. E jly 1/ -,YI - Z (X'C - I X) Ix 'C -y

+ r {C-1 - C'1 xlc-1 XI-1 x'c-1 }y

where C -I ,*- R
n

M z'(X'D-xI-IXI'D-ly

+ - 1 .- D -X(X -1X)-lXD-1}y

where D I + A -1R. As A + -, D + I , and (3.11) results. An identicalwhr n n

derivation leads from (3.10) to (3.12). To obtain (3.13) and (3.14), note

that if R is non-singular, then C -I - (XXn + R) -1 + Ri when A + 0. Thus

(3.13) and (3.14) follow directly from (3.9) and (3.10), respectively.

Theorem 3.4: Denote by T the predicted value vector. Then:

(315 9 ( -1 -1 -2 1-1
(3.15) Y -2I n +(V + XV 1)-I]I[o-y + (V + XV1 1' ) 1 0]

(3.16) E{2 2 /Y.y} - [x( 2 i + -1 V1- ]-l (21 -1 -1

(3.6) JO2 /-y - nI ('aIn + V) Y + v; ].1
Proof: We will use Smith's model (2.1), along with the results of Lindley and

Smith [1972], to prove this theorem. First, from (2.1a), we know that

E{Y/61} - 01. Thus we can calculate ; as:

Y = E{61/I-y}.

Equation (3.15) is thus a special case of the theorem proved by Lindley and

Smith (equations (12) and (13)). Similarly, we can use the lemma proved by

Lindley and Smith to verify (3.16). Combining (2.1a) and (2.1b), we obtain

the distribution of Y conditional on 02 without the mediating parameter

6:

/S 2- + V).

This equation, together with (2.1c), matches the assumptions of the lemma, and

equations (7) and (8) of Lindley and Smith give (3.16).

Theorem 3.5: ; solves the minimization problem: find u to minimize

(3.17) (u-y)'(u-y) + (u-Xlo)'c a 2(V + vX.')](U-x%).
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If V 1  0, (3.17) becomes:

(3.18) (U-y)'(W-y) + ku'[Efi - R X(x'R-lX)-lX'R'Iu.

Moreover, the second term in (3.18) is 0 if and only if u e col(x).

Proof: As in the proof of Theorem 3.4, we use the fact that Y is equal to

the posterior expectation of 01. Combining (2.1b) and (2.1c), we see that

the prior distribution of 8 is:

81 "- N(XO V + IV 1 X').

The conditional distribution of Y given 6 is given by (2.1a) as:

Y/0 1 - N(91,021 n ).

Applying Bayes' Theorem, we find that the posterior probability density

function of 01 is proportional to:

exp{-[o-2 (Y..1)'(Y-8S1) +. (1 - XO ),(V + XV+X')- (61 - XI0)]/21

= exp{-Q( 1 )/21.

This is clearly the p.d.f. for a normal distribution, and its expectation can

be found by minimizing the quadratic form Q(01). But minimizing Q(61) is

equivalent to minimizing (3.17). Thus, the posterior expectation of *1, and

hence T, minimizes (3.17). To derive (3.18), we require the simple matrix

identity (V + V 1 9')- 1 = V- . V-X(XV-1Z + V )-IV-1.

Substituting this into (3.17), we obtain:

(--)'(--) + (,-Ko)' (O,2(V + ,Ix' )-1 (U-Xo)

= (w-y)'(a-Y) + (a-150 )'a2[ - 1 
- V-lx(X'V- 1 X + V1 l)-K'xV- 1](.-5o 0 )

and using the standardized form V = a 2R/A and the assumption that V-1 = 0,

= (u-),(,-y) + )(o-o) ( - 1  R- X(Xu-X)- XR- 1 ] (,S-X 0o).

But Z'(R" 
- 3-(1'3-I1)-I'31] = [3C1 - 1Ix(I'R-1X)-IX'R'KX = 0, so that

we obtain:

(u-)'(u-y) + ku'l " - Rt1x(x'it-x)-x'v-1]u.

This is precisely (3.18). If u 9 col(X), then u = XI for some vector
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Then the equations four lines above imply that the second term in (3.18) is

0. On the other hand, suppose that u is a vector such that the second term

above is 0. Note that this term has the form u'&u, where A is a positive

semi-definite matrix. The quadratic form can be 0 only if Au - 0. This then

implies that: 0 - RAu = [I n - X(X'R- 1 X)-X'R-]u. The matrix

In - I(X'R 1x)- 1z'R"1 is easily seen to be an idempotent matrix which

projects into the orthogonal complement of col(X). Thus, the above condition

implies that u e col(X).

Theorem 4.1:

(4.1) VarlY/-7} - 2 +v+z''(a In + v)- + --
- 2V'(o 2 n + V + xvl)- )'1] 1

, v'1a2 + V + xvl1')-1

2 -1 1 -1.
(4.2) VarO 2 !y = (Z'( + V) X + I InI

Proof: These equations, like those of Theorem 3.1, result from Lemma 3.1 by

applying standard formulas for partitioned multivariate normal vectors.

Lemma 5.1: Given the prediction equation of Corollary 3.2.2, the residual

vector is given by:

(5.5) e(A) = n(X)y,

where B(A) = A[C " - C-1 X(X'C'1 x)-1 x'C -1 ] and C - A + R.n

Proof: From (3.9), the predicted value vector, as a function of A, is:

Y(A) - A(A)y,

where A() X(X'C 11)'1X'C -1 + R{C- 1 - C-I (X'c-IV)-I,C - 1}.

It is easy to verify that X(X'CII)-Iz'C-1 - I - X7cB(A). Substituting

this identity into the equation above we obtain:

A(X) - I - X C-1 311 + X- 1A1n

- I +A 1 (K- Cl(A).
n
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But C AI + R so that:
n

A () - I - B3().
n

The residual vector is thus given by:

e(X) - y - Y ) y - [x n - S( , ly- ,( .
Theorem 5.1: Define h(A) (Y-0( 2 2 d let

(5 . 6), h () [B(X)T]'(I + x-1R)[B(X)T]/ 2 , and

2
(5.7) lim h (A)-- RSSa

,X+M
where RSS is the residual sum of squares from ordinary least squares

regression.

2? + V~ -1 2C
Proof: We will apply Lemma 3.2, noting that N o I A 2 C. We then

obtain:

h(A) - (Y - 0 )(O + A -1a 2R + XVI V) - (T - X0 O)
h) (T X0 n 1O20

- (T - x00 )' Io-2c 1 -AC -c-xx Xo2C'X + v; 1 ) 1 Z.'-2c "1C}*

(Y - zo o )

and as converges to 0, this clearly converges to:

XO-2(T - X0 0 )t{c- 1 - C-1x(Z'-C 1)-X'C-1)(T - zoo )

- T'(A)T/O2 .

Finally, it is easy to show that I + A71R is a generalized inverse ofn
-1(Ai that is, B(A)(I n + A R)B(A) - B(A). Substituting this into the last

line and noting that 3(X) is symmetric gives us (5.6). Zn order to prove

(5.7), we may calculate the limit of (5.6) directly. Alternatively, recall

from Theorem 3.3 that as A X m, the Bayesian estimates converge to the

ordinary least squares estimates. Correspondingly, the residual vector

3( A)y converges to the OLS residual vector. The weighting matrix clearly

converges to the identity. Hence, (5.6) converges to the residual sum of

squares for OLS regression.
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Lemma 5.2: Given model (2.1), let ; denote the vector of predicted values.

lij~~~ I{Y-~ A2

lf ZJ(- - T'(X n + A-IR)(Y - Y)} - (n-p),.
V1 +0

Proof: We use Theorem 3.1 to find ;' using the standardized notation

- 2 2-1 2 )
Z0+(-

1O2 R + X~X'(2n -12 , -1

o Xa-M I n+ Aa R + IV1I(' - z00).

Adding and subtracting 0 2In from A-12R + XV IX, we find:
. Z O 0 + 1 _ Z O 0 0 ( a 2- l a R + . , , - 1 ( Y _ , O ,

M - a2(a2 n + Ia2 R + XVX)' 1 (7 - (0 so that

" 2 a21n + -I a2 R + XI V-1(T - ZOO) and

E{(Y - )(Y - ;)'1} 04( a23In + x'l a2 R + XFl, 1,1-1E f(, - ZOO),(Y - XOO0,I }*

(a21 + A712 R + V I ')-I

24(2n + -2-12 t + ]VlI, >-1,

since from Leaia 3.1, we know thath

-1( O,(Y -,,'}n (a21 n +-1a2R + XV1X , ).

We then have that for any nxn matrix I:

E{(Y - i)'N(Y - i)} - trace[WE(( - E)(T - E)(]

M a 4 trace[W(a21 + x-I a2R + XVIX-

Applying Lemma 3.2 to the expression above, and using the fact that the limit

and the trace may be interchanged, it is easy to verify that:

,,{ E(Y- T,'W(- - T)) - a .rc.[B(X, ].
+ 0

To complete the proof we need only show that trace[( n + x7IR)S(X)] - n-p.

But this follows imediately from the fact that (I n+ m-tR)B(x) i an

idempotent matrix which projects into the orthogonal complement of col().
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Theorem 5.2: Given the sampling model T - N('Z"0 2 n + A-I0 2 ), and assumingn

that o is known, the appropriate lack of fit statistic for the model

E{Y} - X is:

(5.6) h (A) - [(X)T]'( + A-Ia)[B(A)]/ 
2 .

n 2
The sampling theory distribution of (5.6) under this model is Xnp.

Proof: Under the above sampling theory model, we use generalized least

squares to find the predicted value vector:

Y - I[z'(I + I- R)- x]-lx'( n + AR.)-1.

It is now easy to show that the corresponding residual vector can be written:
" A-1R

Y - Y - (Z +A R)B(A)Y.
n

The appropriate lack of fit statistic for this model is the weighted residual

sum of squares, with the weight matrix inversely proportional to the variance

matrix:

(T - jr),(021 + .-12 1-11 - r

- [(n + -I R)3()Y].(xn + A 1R)-'[(In + A71R)s()Y /a2

- [3(x)y],(x n + 1R)[B(X)]/o.

Corollary 5.2.1: h () is monotone increasing in X.

Proof: Let u be any vector and consider the function:

f(A) - u' ( + i'IR) IU.

Since R is a positive definite matrix, it is clear that for every u, f(A) is

a monotone increasing function of A. Let us denote by e(A) the vector of

residuals from using generalized least squares on the sampling theory problem

of Theorem 5.2. We found in proving that theorem that
h(A) - e(A)(I n + A-R) - )2 . Now let > we wish to show that

h(A ) > h(A ). We have:

2 2 n 2)le A2 )/2h(A*2 )  -1 ) -1 2 2
- e(A 2 )'(I n  A ) ,. ,/

2 + A1 ) X2)/a
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by the general monotonicity property described above for f(A)

> e(A1  '( 1 n + 21 e0 ,)/o - h(%1 )

because e(A1) is the residual vector for the generalized least squares

estimator when A - A1 and hence gives a smaller weighted residual sum of

squares than does e(C 2 )

7
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ABSTRACT (continued)

examined with particular attention to estimating the response function. Numerical

examples help illustrate the models. A general predictive check is developed to

examine the consistency of the model with the observed data.
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